Combination of 4SC-202 and IFN-γ restores mature APC-phenotype in AML cells

A.C. Bretz¹, U. Parmitzke¹, K. Kronthaler¹, R. Baumgartner¹, S. Hamm¹

¹4SC AG, Martinsried, Germany

ACR 2017, Abstract #3088

4SC-202 and acute myeloid leukemia (AML)

4SC-202 is an orally available, clinical stage epigenetic small molecule which inhibits histone deacetylases (HDAC) class I and the lysine-specific demethylase LSD1. Acute myeloid leukemia (AML) is characterized by neoplastic proliferation of immature myeloid cells, which accumulate in the bone marrow and interfere with normal hematopoiesis. Standard therapy consists of induction and consolidation therapy to achieve hematological remission and complete eradication of tumor cells, respectively. One therapeutic strategy is differentiation induction of immature AML cells which may result in decreased proliferation rates, apoptosis and/or enhanced chemotherapeutic sensitivity. In addition, appropriately differentiated AML cells may be able to regain antigen-presenting cell (APC) functions such as presentation of tumor antigens to the immune system and enhancement of an anti-tumoral immune response. To explore a potential rationale of 4SC-202 for AML therapy, we investigated the impact of 4SC-202 on the differentiation of AML cell lines THP-1, HL-60 and MOLM-13.

4SC-202 increases promoter histone acetylation

4SC-202 increases histone acetylation at promoters of differentiation genes. THP-1 cells were treated with increasing doses of 4SC-202 for 24h. Promoter histone acetylation was analyzed by chromatin immunoprecipitation (ChIP) detecting acetylated lysine 9 and 27 on histone H3 (H3K9ac, H3K27ac). Quantification is shown as mean ± input of 2 technical ChIP replicates with corresponding standard deviation compared to IgG control (dotted line). qPCR amplicon location is shown below in respective genomic loci of CD86 and ITGAM (CD11b).

4SC-202 induces differentiation genes

A) 4SC-202 increases CD66 and CD11b cell surface expression in AML cells. AML cell lines THP-1 and HL-60 were treated with 4SC-202 or vehicle (DMSO 0.1%) for 24h and protein cell surface expression was analyzed by flow cytometry. Bars represent mean fluorescence intensity (MFI) with standard deviation of 3 biological replicates. Isotype control was used to analyze unspecific background signal.

B) 4SC-202 is more efficacious in differentiation of mature monocytes compared to immature myeloid cells. AML cell lines THP-1 and HL-60 were treated with 4SC-202 [1 µM], ATRA [20 µM], Hexamethylene bisacetamide [10 µM], GM-CSF [10 ng/mL], TNF-α [10 ng/mL], IFN-γ [10 ng/mL], or vehicle (DMSO 0.1%) for 24h. Protein expression levels were analyzed by flow cytometry. Bars represent mean fluorescence intensity (MFI) with standard deviation of 3 biological replicates.

Conclusion

4SC-202 in AML cells:
- Increases promoter histone acetylation of differentiation genes
- Increases expression of differentiation genes superior to reference compounds
- In combination with IFN-γ promotes a mature antigen-presenting cell (APC) phenotype able to produce pro-inflammatory cytokines

Rationale for consolidation therapy of AML patients:

- T-cell activation
- Immune competent mature APC
- Antigen presentation
- Immune competent mature APC
- Tumor-specific T-cell response

- 4SC-202 induces or enhances production of pro-inflammatory cytokine IL-1β.

Contact: www.4sc.com, Email: anne.bretz@4sc.com